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INTRODUCTION 
 

 

It has been well recognized that merging information from different imaging modalities, 

such as mammography, sonography and magnetic resonance imaging (MRI), will greatly 

benefit the diagnosis of breast cancer [1-4], as well as contribute to the assessment of 

tumor response and image-guided therapy. However, interpreting images from different 

modalities is not trivial as different images of the same lesion may exhibit different 

physical lesion characteristics, and the image acquisitions are performed under different 

breast positioning protocols. Also, the breast is a non-rigid object, and thus conventional 

image registration methods are not appropriate. So the primary problem of merging 

image information from different modalities is to address the task of identifying 

corresponding images of lesions as seen with different imaging techniques. The purpose 

of this research is to develop correlative feature analysis methods for integrating image 

information from multi-modality breast images, taking advantage of the information from 

different views and/or different modalities, and thus improving the sensitivity and 

specificity of breast cancer diagnosis. A novel aspect of the proposed research is the 

development of correlative feature analysis (CFA) into the decision-making process. Our 

hypothesis is that the proposed correlative feature analysis can benefit computerized 

corresponding image analysis, thus help the radiologist efficiently distinguish between 

corresponding and non-corresponding lesion pairs. This report summarizes the progress 

of this Predoctoral Traineeship Award project made by the recipient during the first year. 
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BODY 
 

Training Accomplishments 
 

At the time of this report, the recipient, Yading Yuan, of the Predoctoral Traineeship 

Award has taken 21 out of the 22 required courses towards the Ph.D. degree in medical 

physics. The remaining one course will be taken in 2007, Fall. The courses include 

physics of medical imaging, physics of radiation therapy, mathematics for medical 

physicists, image processing, statistics, machine learning, numerical computation, 

computer vision, anatomy of the body, radiation biology, and teaching assistant training. 

 

Research Accomplishments 
 

1. Database collection 
 

The first part of our work has been collecting a multi-modality image database from the 

University of Chicago Hospitals, which includes full-field digital mammographic 

(FFDM) images, breast ultrasound (US) images and breast magnetic resonance (MR) 

images. The FFDM database consists of 148 malignant and 139 benign lesions. All the 

images were obtained from GE Senographe 2000D systems with a spatial resolution of 

95µm×95µm.  The US database consists of 195 malignant solid lesions, 77 simple cysts, 

25 fibrocystic nodules and 109 benign solid lesions. The US images were obtained with a 

Philips HDI 5000 US unit and a 12-5MHz linear array probe. The pixel size varied from 

53 µm to 212 µm, with the average value of 114 µm. The MR database consists of 97 

malignant and 84 benign lesions. The MR images were obtained from 1.5T GE scanners 

using T1-weighted 3D spoiled gradient echo sequences. For each case, one pre-contrast 

and five post-contrast series were taken and each series contained 60 coronal slices with a 

range of planar spatial resolution from 1.25×1.25mm
2
 to 1.6×1.6mm

2
.  Slice thickness 

ranged from 3 to 4 mm depending on breast size. All the cases in the multi-modality 

database were identified by expert breast radiologists based on visual criterion and either 

biopsy or aspiration proven reports.  

 

Based on the FFDM database, we constructed 123 corresponding image pairs and 82 non-

corresponding pairs. Each pair consists of a craniocaudal (CC) view and a mediolateral 

(ML) view. Considering the most realistic scenario of lesion mismatch in clinical 

practice, the non-corresponding pairs were constructed from cases of the same patients 

but different physical lesions. Since in our database the number of patients having two or 

more lesions in the same breast is limited, the non-corresponding dataset included all 

possible lesion combinations from different views.  

 

With the whole multi-modality database, we also constructed a dataset with 112 cases 

having both mammography and sonography. By incorporating MR images, there are 88 

cases having all the three modality images so far. We are currently having radiologists 

determine the correspondence of lesions appeared in different modality images. 

 

2. Investigation of lesion segmentation 
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Mass lesion segmentation on mammograms is a challenging task since mass lesions are 

usually embedded and hidden in varying densities of parenchymal tissue structures. We 

have developed a dual-stage method for automatic delineation of lesion boundaries on 

FFDM images. This method utilizes a geometric active contour model that minimizes an 

energy function based on the homogeneities inside and outside of the evolving contour. 

Prior to the application of the active contour model, a radial gradient index (RGI) based 

segmentation method is applied to yield an initial contour closer to the lesion boundary 

location in a computationally efficient manner. Based on the initial segmentation, an 

automatic background estimation method is applied to identify the effective circumstance 

of lesion, and a dynamic stopping criterion is implemented to terminate the contour 

evolution when it reaches the lesion boundary. By using the FFDM database described 

above, we quantitatively compare the proposed algorithm with a conventional region-

growing method and a RGI-based algorithm by use of the area overlap ratio between 

computer segmentation and manual segmentation by an expert radiologist. At an overlap 

threshold of 0.4, 85% of the images are correctly segmented with the proposed method, 

while only 69% and 73% of the images are correctly delineated by our previous 

developed region-growing and RGI method.  A full description of the method is in 

reference [5] which is attached as Appendix A.  

 

3. Investigation of feature correlation 
 
We evaluated the correlation performance of individual computerized features extracted 

from the FFDM images of a lesion obtained in CC and ML views. In order to evaluate the 

robustness of the correlation performance to lesion segmentation, besides the 

radiologist’s outlines, three automatic segmentation methods were employed to extract 

the mass lesion from the surrounding tissues, which includes a conventional region-

growing method, a RGI-based method and the newly-developed dual-stage segmentation 

method. 15 computer-extracted features of each lesion were calculated in both views in 

order to quantify the characteristics of margin, shape, contrast and texture of the lesion. 

For each feature, correlation coefficient between the two views and the p-value of the 

derived correlation coefficient were obtained. Our results show that the features 

characterizing shape, contrast and texture performed better among the 15 individual 

features despite of segmentation methods and pathology. This is because the features 

representing large-scale information are less sensitive to the change of position than those 

representing small-scale information, which results in the higher correlation between 

large-scale features from different views than that of small-scale features. This work 

provides a guide for discriminating corresponding and non-corresponding lesion pairs 

within the CAD framework. It is also helpful for guiding the development of new 

features to improve the accuracy of image matching in disease diagnosis and prognosis. 

A more detailed summary can be found in reference [6], which is also attached as 

Appendix B. 

 

Mutual information (MI) is another measure of the dependence between two variables. It 

is well understood that mutual information measures the general dependence, while the 

correlation coefficient measures the linear dependence. So we also investigated the 

mutual information among the features and assessed its effect on the choice of 
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discriminating features as compared with the use of linear correlation coefficient between 

features. For each feature described above, mutual information between the two views 

was obtained using a density estimation method (e.g., Parzen windows). However, the 

dependence rank of features determined by mutual information highly agreed with that 

determined by linear correlation coefficient, yielding a correlation coefficient of 0.87. 

This result indicated that linear correlation coefficient is a good metric to represent the 

dependence between features from different views. Moreover, since linear correlation 

coefficient is bounded to [-1,1], we will use linear correlation coefficient as the metric to 

choose the discriminating features.    

 

4. Development of new computerized features 
 
Since features characterizing large-scale information usually have better correlation 

performance, we developed two sets of “large-scale” features. Firstly, we extracted a set 

of texture features based on a gray-level co-occurrence matrix (GLCM). For each region, 

four GLCMs were constructed along four different directions of 0°, 45°, 90° and 135°. 

Assuming that there is no directional texture features in mammograms, a non-directional 

GLCM was obtained by summing all the directional GLCMs. Texture features were then 

computed from each non-directional GLCM. To avoid sparse GLCMs for smaller lesions, 

the gray level range of image was scaled down to 6 bits, resulting in GLCM of size 

64×64. Among the texture features, correlation feature performed best with a correlation 

coefficient of 0.67 (p-value < 10
-3

). 

 

In clinic practice, radiologists commonly use the distance from nipple to the center of a 

lesion to correlate the lesion in different views. It is generally believed that this distance 

keeps fairly constant. Thus, we developed a distance feature to measure the Euclidean 

distance between the nipple location and the mass center of lesion. We also developed an 

automatic nipple localization scheme to tracking nipple markers on each FFDM images. 

With computer-identified nipples, the distance features in CC views are highly correlated 

with those in ML views, yielding a correlation coefficient of 0.88 (p-value < 10
-3

).  

 
5. Evaluation of the performance of computerized features for the task of 

distinguishing corresponding image pairs and non-corresponding ones 
 
We used the FFDM database to evaluate the performance of computerized features for 

the task of distinguishing corresponding and non-corresponding image pairs from CC and 

ML views [7]. 17 features that were automatically extracted from the lesions could be 

grouped into three categories: (I) density and morphological features; (II) texture features 

and (III) distance feature. A stepwise feature selection procedure was employed to select 

an effective subset of features, which were then combined by Bayesian artificial neural 

networks (BANN) to obtained a discriminant score, yielded an estimate of the probability 

that the two images are of the same physical lesion. Receiver characteristic (ROC) 

analysis was used to evaluate the classification performance of the individual features and 

the selected feature subset. The distance feature yielded an AUC (area under the ROC 

curve) of 0.81 with leave-one-out cross-validation, and the feature subset with 3 features 

yielded an AUC of 0.86. The preliminary study, which includes 124 corresponding and 
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35 non-corresponding image pairs, has been submitted to SPIE Medical Imaging 

Conference, 2008. The abstract is attached as Appendix C.  
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KEY RESEARCH ACCOMPLISHMENTS 
 

• Collected and maintained a multi-modality database including full-field digital 

mammograms, breast ultrasound images and breast MR images. More than 180 

lesions were collected for each modality, which is suitable for the further correlative 

feature analysis across image modalities. 

• Developed a dual-stage lesion segmentation method for FFDM images, which 

outperformed the performances of our previous developed region-growing method 

and the RGI-based segmentation method. 

• Investigated feature correlation with both linear correlation coefficient and mutual 

information. The results demonstrate that the features representing large-scale 

information of lesions usually have better correlation performance and linear 

correlation coefficient is an appropriate metric characterizing the dependence 

between features from different views.  

• Developed texture features and distance feature, which have been proven to be useful 

in differentiating corresponding and non-corresponding image pairs. 

• Evaluated the performance of computerized features for the task of distinguishing 

corresponding and non-corresponding image pairs. The selected feature subset 

yielded an AUC of 0.86 with leave-one-out cross-validation.  
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REPORTABLE OUTCOMES 
 

Peer-reviewed Journal Papers 

• Y. Yuan, M. L. Giger, H. Li, K. Suzuki and C. Sennett, “A dual-stage method for 

lesion segmentation on digital mammograms”, Med. Phys, (In press), 2007. 

Conference Proceeding Papers 

• M. L. Giger, Y. Yuan, H. Li, K. Drukker, W. Chen, L. Lan and K. Horsch, “Progress 

in breast CADx, ” Biomedical imaging: From Nano to Macro, 2007. ISBI 2007. 4th 

IEEE International Symposium on, Arlington, Virginia, 2007 

• H. Li, M. L. Giger, Y. Yuan, L. Lan, K. Suzuki, A. Jamieson and C. Sennett, 

“Comparison of computerized image analyses for digitized mammograms and FFDM 

images, ” International Workshops on Digital Mammography, Manchester, United 

Kingdom, 2006 

Conference Presentations and Abstracts 

• Y. Yuan, M. L. Giger, H. Li and C. Sennett, “Correlative feature analysis of FFDM 

images”, submitted to SPIE Medical Imaging Conference, 2008. 

• Y. Yuan, M. L. Giger, H. Li and C. Sennett, “Computer-based feature correlation on 

multiple-view FFDM images”, Radiological Society of North America, Chicago, 

Illinois, 2006 
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CONCLUSIONS 
 

The recipient of the Predoctoral Traineeship Award has taken all the required core 

courses and many research related elective courses as well. These trainings have proven 

useful for the recipient to achieve the proposed research goals. 

 

During the first year, we have collected and maintained a multi-modality database 

including full-field digital mammograms, breast ultrasound images and breast MR 

images, which is suitable for the proposed research on correlative feature analysis for 

multi-modality images. We have developed computerized methods for lesion 

segmentation, feature extraction and selection, feature correlation analysis and image pair 

classification in differentiating corresponding and non-corresponding FFDM image pairs 

from CC and ML views, respectively. The results have shown that our computerized 

feature correlative analysis has great potential in identifying the corresponding image pair 

of a lesion for FFDM images.  

 

Overall, we have achieved the goals for the first year and laid down a good foundation 

for the research in the next two years. Our goals in the next two years include collection 

of more image data, development of feature selection method based on mutual 

information and compare it with stepwise feature selection and genetic algorithm-based 

feature selection methods, investigation of features that would have better correlation 

between image pairs across different image modalities, and evaluation of the proposed 

feature correlative analysis with the whole multi-modality database.  
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Abstra
tMass lesion segmentation on mammograms is a 
hallenging task sin
e mass lesionsare usually embedded and hidden in varying densities of paren
hymal tissue stru
tures.In this paper, we present a method for automati
 delineation of lesion boundries ondigital mammograms. This method utilizes a geometri
 a
tive 
ontour model thatminimizes an energy fun
tion based on the homogeneities inside and outside of theevolving 
ontour. Prior to the appli
ation of the a
tive 
ontour model, a radial gradientindex (RGI) based segmentation method is applied to yield an initial 
ontour 
loserto the lesion boundary lo
ation in a 
omputationally e�
ient manner. Based on theinitial segmentation, an automati
 ba
kground estimation method is applied to identifythe e�e
tive 
ir
umstan
e of lesion, and a dynami
 stopping 
riterion is implementedto terminate the 
ontour evolution when it rea
hes the lesion boundary. By using afull-�eld digital mammography database with 739 images, we quantitatively 
omparethe proposed algorithm with a 
onventional region-growing method and a RGI-basedalgorithm by use of the area overlap ratio between 
omputer segmentation and manualsegmentation by an expert radiologist. At an overlap threshold of 0.4, 85% of theimages are 
orre
tly segmented with the proposed method, while only 69% and 73%of the images are 
orre
tly delineated by our previous developed region-growing andRGI methods, respe
tively. This resulting improvement in segmentation is statisti
allysigni�
ant.Key words: Mass lesion segmentation, geometri
 a
tive 
ontour model, 
omputer-aided diagnosis, breast 
an
er
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I. INTRODUCTIONBreast 
an
er is the most 
ommon malignan
y in Ameri
an women and the se
ond most
ommon 
ause of death from malignan
y in this population. A

ording to the Ameri
anCan
er So
iety, about 178,480 women in the United States will be found to have invasivebreast 
an
er in 2007, and about 40,460 women will die from the disease this year [1℄.Although some imaging modalities, su
h as magneti
 resonan
e imaging (MRI)[2℄[3℄ andsonography[4℄[5℄, are 
urrently being investigated to improve sensitivity and spe
i�
ity ofbreast 
an
er diagnosis, X-ray mammography is still the most prevalent imaging pro
edurefor the early dete
tion of breast 
an
er.Lesion segmentation, whi
h extra
ts the lesion from the surrounding tissues, is an essen-tial step in the 
omputerized analysis of mammograms. As mass lesions are usually embeddedand hidden in varying densities of paren
hymal stru
tures, the task of lesion segmentationis not trivial. Many resear
hers have developed 
omputer algorithms for this task. Huo etal. [6℄ employed a region-growing method to �nd the 
ontour, in whi
h abrupt 
hanges insize and 
ir
ularity were used as the rules of segmentation. Kupinski et al. [7℄ segmentedthe mass by applying either a radial gradient index (RGI) model or a probabilisti
 model tothe lesion, multiplied by a 
onstraint fun
tion. Petri
k et al. [8℄ introdu
ed a segmentationalgorithm that 
ombines a density-weighted 
ontrast enhan
ement �lter and a region grow-ing method. Li et al. [9℄ employed a multiresolution Markov random �eld model to dete
ttumors in mammographi
 images. Timp et al. [10℄ employed both edge based informationas well as a priori knowledge about the grey level distribution of the region of interest (ROI)around the mass, and obtained an optimal 
ontour using dynami
 programming. To segmentlesions, Guliato et al. [11℄ proposed two fuzzy sets related methods � one employing a regiongrowing after fuzzy-sets-based pre-pro
essing, and the other using a fuzzy region-growingmethod that takes into a

ount the un
ertainty present around the boundaries of tumor.Li et al. [12℄ presented a statisti
al model for enhan
ed segmentation and extra
tion of asuspi
ious mass area from mammographi
 images. In their study, a morphologi
al operation3



is derived to enhan
e disease patterns of suspe
ted masses by eliminating unrelated ba
k-ground 
lutter, and a model-based image segmentation is performed to lo
alize the suspe
tedmass areas using sto
hasti
 relaxation labeling.Originally introdu
ed by Kass [13℄, a
tive 
ontour models (or snakes) have attra
ted mu
hattention as image segmentation te
hniques. An a
tive 
ontour model minimizes an energyfun
tional along a deformable 
ontour, whi
h is in�uen
ed by both internal and externalterms. The internal energy 
ontrols the smoothness and elasti
ity of the 
ontour, whilethe external energy attra
ts the evolving 
ontour to deform toward salient image features,su
h as edges. Although the a
tive 
ontour model has been used for segmenting obje
ts ina wide range of medi
al appli
ations [14℄[15℄[16℄[17℄[18℄[19℄, to the best of our knowledge,few works have applied this model to the task of lesion segmentation in mammographi
images. Brake et al. [20℄, segmented mass lesions by a dis
rete a
tive 
ontour methodwhose external energy was determined by the image gradient magnitude. Sahiner et al. [21℄applied an a
tive 
ontour model that in
orporated edge and region analysis, in whi
h the
ontour energy was minimized by a greedy algorithm. In their work, however, the 
ontourwas represented by the verti
es of an N-points polygon and ea
h vertex was tra
ked duringthe pro
ess, whi
h makes it di�
ult for the 
ontour to adapt to a 
hange of topology, su
has splitting or merging parts.Di�ering from the segmentation methods mentioned above, in this study, we develop anautomati
 lesion segmentation algorithm that employs a geometri
 a
tive 
ontour model toextra
t lesions. Geometri
 a
tive 
ontour models [22℄[23℄ represent 
ontours as a level setof a higher-dimensional s
alar fun
tion[24℄. The 
ontours are obtained only after 
ompleteevolution, thereby allowing the model to handle the topologi
al 
hanges naturally. As masslesions usually have weak edges, we use a region-based a
tive 
ontour model [25℄ that is basedon global image information, and is less sensitive to noise and the initial 
ontour. In order toimprove the 
omputational e�
ien
y and suppress the in�uen
e of unrelated stru
tures, ourprevious RGI-based segmentation method[7℄ is applied �rst to delineate an initial 
ontour,4



whi
h is relatively 
lose to the a
tual margin, and to estimate the e�e
tive ba
kground. Wethen exploit a dynami
 stopping 
riterion, whi
h is solely based on the property of the givenimage, to terminate the evolving pro
edure automati
ally.The organization of this paper is as follows: Se
tion 2 introdu
es the database used forthis study. Se
tion 3 des
ribes the proposed segmentation method. Se
tion 4 presents theresults, and Se
tion 5 and 6 give a dis
ussion and 
on
lusion, respe
tively.II. MATERIALSIn this study, we used a full-�eld digital mammography (FFDM) database, whi
h 
onsistsof 139 benign (327 mammograms) and 148 malignant (412 mammograms) lesions. All theimages were 
olle
ted from the University of Chi
ago Hospitals (UCH) and obtained fromGE Senographe 2000D systems (GE Medi
al Systems, Milwaukee, WI) with a spatial res-olution of 95 µm × 95 µm. The masses were identi�ed and outlined by an expert breastradiologist based on visual 
riterion and biopsy-proven reports. These outlines were used asthe �gold standard� for 
alibrating parameters and evaluating performa
e. The distributionsof e�e
tive proje
tion diameter, whi
h is de�ned as the e�e
tive diameter of the area insidethe radiologist's manually-delineated 
ontours, are shown in Fig. 1.[Figure 1 about here.℄III. METHODSThe main aspe
ts of the proposed segmentation method in
lude an initial RGI segmentation[7℄,ba
kground estimation and trend 
orre
tion, and an a
tive 
ontour segmentation based onlevel sets. Fig. 2 shows the �ow 
hart of the overall implementation.[Figure 2 about here.℄5



A. A
tive 
ontour modelThe a
tive 
ontour model [25℄ relies on an intrinsi
 property of image segmentation: for animage formed by two regions, ea
h segmented region should be as homogeneous as possible.Mathemati
ally, this model 
an be expressed by the following energy fun
tion:
E(c1, c2, C) = µ · Length(C)

+λ1 ·

∫

inside(C)

|f0(x, y) − c1|
2dxdy

+λ2 ·

∫

outside(C)

|f0(x, y) − c2|
2dxdy (1)where µ ≥ 0, λ1, λ2 > 0 are �xed weight parameters, C is the evolving 
ontour and

Length(C) is a regularizing term that prevents the �nal 
ontour from 
onverging to a smallarea due to noise, and c1 and c2 are mean values inside and outside of C, respe
tively. Notethat many other a
tive 
ontour models are edge-based as opposed to the gray-level basedmethod used here.Equation (1) 
an be represented and solved by level set theory [26℄. Level set theory, inwhi
h the two-dimensional evolving 
ontour C is represented impli
itly as the zero level set ofa three-dimensional Lips
hitz fun
tion φ(x, y), i.e. C = {(x, y) ∈ Ω : φ(x, y) = 0}, evolvesthe 
ontour by updating the level set fun
tion φ(x, y) at �xed 
oordinates through iterationsinstead of tra
king the 
ontour itself. The initial level set fun
tion φ(x, y) is usually de�nedas the signed distan
e fun
tion:
φ(x, y; t = 0) = ±d (2)where d is the distan
e from (x, y) to C(t = 0), where C(t = 0) 
orresponds to the initial
ontour. The plus (minus) sign is 
hosen if the point (x, y) is inside (outside) the initial
ontour C(t = 0). 6



With the evolution of the 
ontour, the level set fun
tion φ 
annot be held as a signeddistan
e fun
tion, nor 
an it be kept smooth. In order to maintain a smooth level set fun
tion,and thus ensure numeri
al stability of evolution, it is ne
essary to reinitialize the evolvinglevel set fun
tion to a signed distan
e fun
tion periodi
ally. However, reinitialization is a
omputationally 
onsuming pro
edure as it evolves solving the partial di�erential equation
φt = sign(φt)(1− ‖ ∇φt ‖), where ∇φt 
orresponds to the gradient of the level set fun
tion.In addition, most reinitializing s
hemes tend to move the 
ontour to some degree due tonumeri
al errors [27℄.A signed distan
e fun
tion φ, however, has the intrinsi
 property that ‖ ∇φ ‖= 1. Thus,it is more natural to in
orporate this property into the 
ontour evolution instead of usingthe independent reinitializaing pro
edure des
ribed above. Thus, we 
an introdu
e anotherregularizing term [28℄ in the a
tive 
ontour model in (1) :

E(c1, c2, C) = µ · Length(C)

+ν ·
1

2

∫

Ω

(1− ‖ ∇φt ‖)
2dxdy

+λ1 ·

∫

inside(C)

|f0(x, y) − c1|
2dxdy

+λ2 ·

∫

outside(C)

|f0(x, y) − c2|
2dxdy (3)where ν is a weighted parameter and Ω represents the whole image spa
e.By repla
ing C with φ(x, y) in the energy fun
tional in (3) and introdu
ing the regularizedversions of the Heaviside fun
tion Hǫ(φ) = 1

2
[1 + 2

π
arctan(φ

ǫ
)]along with the 
orrespondingDira
 measure δǫ(φ) = d

dφ
Hǫ(φ) = ǫ · [π · (ǫ2 + φ2)]−1, as given by Chen and Vese in [25℄,Equation (3) 
an be expressed as:

7



Eǫ(c1, c2, φ) = µ ·

∫

Ω

δǫ(φ(x, y)) ‖ ∇φ(x, y) ‖ dxdy

+ν ·
1

2

∫

Ω

(1− ‖ ∇φ(x, y) ‖)2dxdy

+λ1 ·

∫

Ω

|f0(x, y) − c1|
2Hǫ(φ(x, y))dxdy

+λ2 ·

∫

Ω

|f0(x, y) − c2|
2(1 − Hǫ(φ(x, y)))dxdy (4)where the �rst integral 
ontrols the length of the 
ontour and the se
ond integral helps tosmooth the level set fun
tion and thus avoid the need for reinitialization.By �xing c1 and c2 and minimizing Eǫ in terms of φ at ea
h iteration, the asso
iatedEuler-Lagrange equation 
an be derived as:

δǫ(φ) · [µ · κ − λ1 · (f0 − c1)
2 + λ2 · (f0 − c2)

2] + ν · div[(1 −
1

‖ ∇φ ‖
) · ∇φ] = 0 (5)where

κ = div(
∇φ

‖∇φ‖
) (6)represents the 
urvature of the 
ontour C, and whi
h also now in
orporates the regularizingterm from Li et. al.[28℄. This derivation, 
ombining the aspe
t of a
tive 
ontour withoutedges and level set without reinitialization, is given in the Appendix I. Using the gradientdes
ent method, we 
an solve φ in Equation (5) iteratively by letting φ be a fun
tion ofiteration t and repla
e the zero on the right-hand side of (5) by the time derivative of φ.Thus, we obtain a partial di�erential equation as:

∂φ

∂t
= δǫ(φ) · [µ · κ − λ1 · (f0 − c1)

2 + λ2 · (f0 − c2)
2] + v · div[(1 −

1

‖ ∇φ ‖
) · ∇φ]. (7)The time derivative ∂φ

∂t
was approximated by a forward �nite di�eren
e:

8



δφ

δt
=

φn+1 − φn

∆t
(8)while 
onsidering the numeri
al stability of the PDE solution, the 
urvature κ was approxi-mated by a dis
retizing s
heme that 
ombines both foward and ba
kward �nite di�eren
es,as suggested in [29℄.

κ = ∆x
−

(

∆x
+φn

i,j

((∆x
+φn

i,j)
2 + (m(∆y

+φn
i,j, ∆y

−φn
i,j)

2)1/2

)

+∆y
−

(

∆y
+φn

i,j

((∆y
+φn

i,j)
2 + (m(∆x

+φn
i,j, ∆x

−φn
i,j)

2)1/2

) (9)where
∆x

∓ = ∓(φi∓1,j − φi,j) (10)and similarly for ∆y
∓φi,j.

m(a, b) =

(

sng(a) + sng(b)

2

)

min(|a|, |b|). (11)B. Contour initializationThe energy fun
tion in Equation (3) depends on the evolving 
urve C in a 
omplex way. Itis not guaranted to be quadrati
 or even 
onvex, and one might �nd a lo
al minimum of theenergy fun
tion somewhere in the neighborhood of the initial 
ontour. Thus, initializing the
ontour is a non-trivial task for a
tive 
ontour models. Sin
e lesions' sizes vary, it is di�
ultto �nd �xed parameters (su
h as the radius of a 
ir
le) with whi
h to initialize the 
ontourfor an entire database. Hen
e, we use our previous RGI-based segmentation method[7℄ toestimate the initial boundary of a lesion.The RGI-based segmentation algorithm[7℄ in
orporates prior knowledge that mass le-9



sions are roughly 
ompa
t, and thus, the original image f(x, y) is multiplied with a two-dimensional 
onstraint fun
tion G(x, y; µx, µy, σ2) to yield a pre-pro
essed image h(x, y)as:
h(x, y) = f(x, y) × G(x, y; µx, µy, σ2) (12)where G(x, y; µx, µy, σ2)is a Gaussian fun
tion 
entered at the manually-indi
ated seedpoint (µx, µy), and with varian
e σ2. The multipli
ation with the Gaussian fun
tion redu
esthe 
ontribution of stru
tures beyond the lesion, and thus, σ is set to 15mm to a

ommodatemost mammographi
 lesion sizes. We have found that the segmentation performan
e is notstrongly dependent on the 
hoi
e of σ. Larger lesions 
an also be segmented even thoughthe small deviations around the margin of the lesion are usually not delineated well.Starting from the given seed point (µx, µy), a series of grey level thresholds are thenapplied to the pre-pro
essed image h(x, y) to yield multiple 
ontours. For ea
h 
ontour, anRGI value is 
al
ulated, where RGI is de�ned as:

RGI(µx, µy, Ci) =

∑

(x,y)∈Ci

(∇h(x, y) · r̂(x,y)
‖r̂(x,y)‖

)

∑

(x,y)∈Ci

‖ ∇h(x, y) ‖
(13)where Ci is the set of points on the ith 
ontour, ∇h(x, y) is the gradient ve
tor of h(x, y)at point (x, y), r̂(x, y)/ ‖ r̂(x, y) ‖ is the normalized radial ve
tor, the dire
tion of whi
h is
al
ulated at position (x, y) with respe
t to the seed point (µx, µy). Of these 
ontours, theone yielding the maximum RGI value is 
hosen as the 
ontour that best delineates the lesionin the initial step.RGI represents the average proportion of the gradients in the radially outward dire
tion.The strategy of 
hoosing maximum RGI works well for benign lesions as most have 
ir
ular-like shapes and smooth margins. However, for malignant lesions, be
ause of irregular shapesand spi
ulate margins, the resulting 
ontours are usually under-grown. Nevertheless, RGIprovides a good initial 
ontour for the following evolution driven by a
tive 
ontour model.10



C. Ba
kground estimationIn the a
tive 
ontour model, 
ontour evolution relies on the 
ompetition between the regioninside the 
ontour (foreground) and that outside the 
ontour (ba
kground). The presen
e ofstru
ture noises su
h as lymph nodes, paren
hyma, and lo
alization markers 
ompli
ates theba
kground in mammgrams. RGI segmentation provides not only the initial 
ontour, butalso a means to estimate the e�e
tive ba
kground surrounding the lesion. In our study, thee�e
tive ba
kground is de�ned as the set of pixels within a given distan
e d (pixels) fromthe 
ir
ums
ribed re
tangle of the initial 
ontour, as shown in Fig. 3.[Figure 3 about here.℄Distan
e d plays an important role in determining the e�e
tive ba
kground. On onehand, a large d yields a large region and thus better statisti
s on the ba
kground. On theother hand, a small d would not be 
ontaminated by nearby stru
tures. In this study, anautomati
 s
heme was developed to determine the best distan
e d from a series of 
andidates.For a series of distan
es di, i = 1, ..., L, two series of regions 
an be determined, as Fig.4 (a) shows. One series of regions are ba
kground 
andidates Bi (Fig. 4 (b)), and the otherseries are net in
reases of ba
kground BNi (Fig. 4 (
)), where BNi = Bi+1−Bi, i = 1, ..., L−1.Our method is based on the following two prin
iples: With the expansion of ba
kground,1) the mean gray value of Bi, i.e. mean(Bi), should de
rease as more areas with lower graylevel are in
luded; and 2) the standard deviation of BNi , i.e. std(BNi), should not 
hangesubstantially for relatively smooth ba
kground. By monitoring mean(Bi) and std(BNi) within
reasing di , two potential distan
e 
andidates are obtained. One 
andidate is de�ned asthe distan
e at whi
h mean(Bi) rea
hes a minimum value, and the other 
andidate is de�nedas the distan
e at whi
h std(BNi) demonstrates the maximum in
rease, as shown in Fig. 5.At last, the �nal distan
e is 
hosen as the minimum of these two 
andidates. As for theexample in Fig. 4, the distan
e is automati
ally determined d = 110 (pixels).[Figure 4 about here.℄11



[Figure 5 about here.℄D. Ba
kground trend 
orre
tionDue to the non-uniformity of the ba
kground distribution, some pixels in the ba
kgroundhave similar gray values as in the lesion, whi
h hinders the segmentation performan
e of thea
tive 
ontour model. Thus, a two-dimensional ba
kground trend 
orre
tion was employedprior to segmentation. The ba
kground trend is estimated by �tting a two-dimensionalsurfa
e with a least-squares method to the gradual 
hange in the ba
kground pixel valueswithin the extra
ted ba
kground estimation region. Here, we used a �rst-order ploynomialfun
tion, i.e. f(x, y) = a+b ·x+c ·y, to des
ribe the two-dimensional surfa
e as higher orderpolynomial fun
tions will estimate mass lesion instead. Fig. 6 demonstrates the signi�
an
eof the ba
kground trend 
orre
tion when a non-uniform ba
kground is present.[Figure 6 about here.℄E. Dynami
 stopping 
riterionTo stop the evolution of a 
ontour, a pre-determined threshold is often used. Various metri
s
an be used to 
he
k 
onvergen
e of evolution, su
h as the 
hange of level set fun
tion φ [30℄and the 
hange of length of 
ontour [31℄. The 
ontour evolution 
an also be terminated whenthe area inside the 
ontour di�ers from the initial one by a given value [32℄. In our initialstudy, we had ever de�ned a stopping 
riterion of relative foreground 
hange (RFC), whi
h isthe ratio between the 
hange of foreground and the area of foreground. Comparing with thestopping 
riterion of 
hange of 
ontour length used in [31℄, RFC has two advantages: 1) RFCis a relative measure and thus is more suitable for lesions with various sizes; 2) RFC is more
omputationally e�
ient as the aquisition of 
ontour in [31℄ brings additional 
omputation.No matter the strategy is used, it is ne
essary to set some threshold in advan
e. However, dueto varying sizes of lesions as well as sizes of ba
kground obtained from automati
 ba
kground12



estimation, it is di�
ult to �nd a �xed parameter for 
ontrolling 
onvergen
e.In our preliminary work [33℄, we developed a dynami
 method to terminate 
ontourevolution automati
ally. In that work, as the 
ontour evolves, mean values of both foregroundand ba
kground will de
rease gradually. As foreground is generally more homogeneous thanthe ba
kground, the rate of foreground mean 
hange is less than that of ba
kground mean
hange. However, as the evolving 
ontour 
rosses the lesion margin, the foreground meanwill de
rease faster than will the ba
kground mean. Thus, during dynami
 
ontouring, thedi�eren
e between the rate of foreground mean 
hange and that of ba
kground mean 
hangeis tra
ked, and 
ontour evolution is terminated when the de
rease of foreground mean valueis more rapid than that of the ba
kground mean value. This method provides a way toterminate 
ontour evolution free of pre-de�ned threshold. However, it negle
ts the in�uen
eof sizes of both foreground and ba
kground, and thus 
eases 
ontour evolution earlier thanexpe
ted.In order to address this problem, we modi�ed the previous method, whi
h we presenthere in one dimension. As Fig. 7 shows, g(x) is a de
reasing fun
tion de�ned on the interval
[0, L], and point s is moving within [0, L] at the speed of ~v. s also splits [0, L] into tworegions. For simpli
ity, the region [0, s] is named region 1, and [s, L] is region 2. Then, themean values of region 1 and 2 are: [Figure 7 about here.℄

c1 =

∫ s

0
g(x)dx

s
, c2 =

∫ L

s
g(x)dx

L − s
..The slope of c1 is:
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dc1

dt
=

dc1

ds
·
ds

dt

=
d

ds
(

∫ s

0
g(x)dx

s
) · ~v

=
g(s) − c1

s
· ~v.Here, we use the fa
t that ~v = ds

dt
· v̂, where v̂ is the outward unit ve
tor. Similarly, the slopeof c2 is :

dc2

dt
= −

g(s) − c2

L − s
· ~v.Thus, the di�eren
e between these two slopes is:

∆v =
dc1

dt
−

dc2

dt
= (

g(s) − c1

s
+

g(s) − c2

L − s
) · ~v. (14)As the dis
ussed above, as s moves within the obje
t, we have ∆v > 0. As s moves a
rossthe edge, ∆v will be
ome negative. When ∆v = 0, we have g(s) = s
L
·c2+

L−s
L

·c1 > 1
2
(c1+c2) asin general L−s > s and c1 > c2 . However, if only the speed terms driven by image propertyin Equation (7) are 
onsidered, the evolution should stop at s0 su
h that g(s0) = 1
2
(c1 + c2).Be
ause of the in�uen
e of sizes, s will stop moving qui
kly if the 
riterion in Equation (14)is used.In order to eliminate the in�uen
e of size, a weighted di�eren
e between slope of c1 andthat of c2 is introdu
ed as :

∆vw =
s

L − s
·
dc1

dt
−

dc2

dt
=

1

L − s
· [2 · g(s) − (c1 + c2)] · ~v. (15)It 
an be shown that ∆vw goes to zero at the desired 
ontour s0, where g(s0) = 1

2
(c1 + c2).The one-dimensional 
ase, des
ribed above, 
an be extended to two-dimensional one.During the 
ontour evolution, the weighted di�eren
e between the mean slope of foreground14



and that of ba
kgournd is monitored, and the 
ontour evolution is terminated when theweighted slope di�eren
e 
onverges to zero.F. ImplementationIn order to 
alibrate parameters in the proposed segmentation method, ten digitized s
reen-�lm mammograms (SFM) with spatial resolution of 100µm × 100µm were analyzed. The
alibrated segmentation method was then applied to the entire FFDM database for indepen-dent performan
e evaluation.In our study, we kept both λ1 and λ2 in Equation (7) to one (i.e. λ1 = λ2 = 1) sin
ethe 
ontribution of the homogeneities of inside and outside the 
ontour should be equally
onsidered. Other parameters in Equation (7) were 
hosen as follows: ǫ = 1 and ∆t = 0.1,where ǫ in�uen
es the Heavyside fun
tion and ∆t 
ontrols how qui
kly the level set fun
tion
hanges. Note that µ 
ontrols the smoothness of the �nal 
ontour. However, If one wantsto depi
t the �ne details of the obje
t, one should 
hoose a small µ. On the 
ontrary, if onewants to obtain a smoother 
ontour, one should set a large µ. As some of our 
omputer-extra
ted features, su
h as spi
ulation, 
hara
terize the �ne details of the lesion margin, we
hose a fairly small value of µ, i.e. 0.001× 10232, whi
h also allows for the use of the 10 bitdata. To ensure numeri
al stability, the 
oe�
ient ν must satisfy ν · ∆t < 1
4
[28℄, so we set

ν = 2 in our study. The maximum number of iterations is set to 500.G. Performan
e evaluationThe performan
e of the proposed segmentation algorithm was assessed by 
omparing the
omputer-delineated 
ontours with the outlines drawn by an expert breast radiologist. Be-sides visually evaluating the agreement of 
omputer-segmented results with radiologist'smanually-
ontoured lesion margins, a quantitative measure was used to evaluate the segmen-tation performan
e. For a parti
ular lesion, the area overlap ratio (AOR) between manualsegmentation and 
omputer segmentation is de�ned as:15



AOR =
Area(M ∩ C)

Area(M ∪ C)
(16)where M is the manually-segmented 
ontour and C is the 
omputer-segmented 
ontour.

AOR ranges from zero to one, being zero in the 
ase of no overlap and one in the 
ase ofa perfe
t mat
h. For the entire database, a series of AOR thresholds were obtained andat ea
h AOR threshold, the per
entage of lesions �
orre
tly� segmented was 
al
ulated by
ounting the number of lesions with AOR greater than that threshold.IV. RESULTSA. Evaluation of level set smoothnessIn our study, a new term ES ≡
∫

Ω
(1− ‖ ∇φt ‖)dxdy is added to the original a
tive 
ontourmodel in [25℄, thus we initially evaluate the usefulness of this term. Two sets of �nal 
ontourswere extra
ted from the entire FFDM database, one was obtained with ES and the otherwithout. The results show that ES 
an not only provide a smoother 
ontour, but alsopush the 
ontour 
loser to the lesion margin with less iterations, yielding a mean number ofiterations 160 
ompared to the mean numer of iterations 327 without ES. In the exampleshown in Fig. 8, the left �gure shows the segmentation result without smoothing level setfun
tion, whi
h took 500 iterations. While for the result with smoothing level set fun
tionin the right �gure, it only took 248 iterations to 
onverge.[Figure 8 about here.℄B. Evaluation of dynami
 stopping 
riterionWe investigated our new stopping 
riterion based on the weighted slope di�eren
e betweenforeground mean and ba
kground mean (∆vw), and 
ompared it to the unweighted slopedi�eren
e method as well as the relative foreground 
hange (RFC). The RFC thresholds to16



terminate 
ontour evolution were set as 0.05, and 0.01, respe
tively. During the evolution, were
orded the 
ontours using these four stopping 
riteria and obtained AOR with radiologist'soutlines.Fig. 9 shows plots of the fra
tion of 
orre
tly segmented lesions at various AOR thresholdfor the four stopping 
riteria (∆vw, ∆v, RFC0.05 and RFC0.01) on the FFDM databases.For benign images, all the 
riteria yielded similar segmentation performan
es sin
e the initial
ontours, obtained by RGI segmentation, are 
lose to the true lesion margins. However, asRGI segmentation is inferior for malignant lesions, ∆vw does perform better among all thestopping 
riteria. [Figure 9 about here.℄Table 1 summerizes the statisti
al 
omparison (Holm t test)[34℄ among these four 
riteria,given the mean and standard deviation of AOR for ea
h 
riterion. In terms of area overlapratio (AOR), the weighted slope di�eren
e method is statisti
ally better than the unweightedslope di�eren
e method, and the 
onvergen
e rate at RFC = 0.05 (overall signi�
ant level
αT = 0.05). However, we failed to show a statisti
ally signi�
ant di�eren
e between theweighted slope di�eren
e method and the 
onvergen
e rate at RFC = 0.01. Nevertheless, ifthe number of iterations is taken into a

ount, the mean number of iterations for weightedslope di�eren
e is 156, while it is 280 for RFC0.01. The weighted slope di�eren
e is moree�
ient than RFC0.01. [Table 1 about here.℄C. Comparative evaluation of the segmentation methodThe segmentation algorithm was 
ompared with our previously-reported region-growing[6℄and RGI-based segmentation[7℄ methods. Fig. 10 shows several examples of lesion segmen-tations using these three segmentation methods. The result of the proposed method visuallydemonstrates a better agreement with the radiologist's outline of the lesion.17



[Figure 10 about here.℄Fig. 11 shows the fra
tion of lesions 
orre
tly segmented at various overlap thresholdlevels. At the overlap threshold of 0.4, for benign lesions, 87% of the images are 
orre
tlysegmented with the proposed method, while 72% and 81% of the images are 
orre
tly seg-mented by the region-growing and RGI-based methods, respe
tively. For malignant lesions,84% of the images are 
orre
tly segmented with the proposed method, while 66% and 67% ofthe images are 
orre
tly segmented by region-growing and RGI-based methods, respe
tively.[Figure 11 about here.℄Table 2 gives the statisti
al 
omparison (Holm t test)[34℄ for AOR means from the threesegmentation methods. The improvement of AOR with the proposed method was found tobe statisti
ally signi�
ant (overall signi�
ant level αT = 0.05).[Table 2 about here.℄V. DISCUSSIONWe developed a dual-stage segmentation method to e�
iently segment mass lesions fromthe paren
hymal surround in FFDM images. Our proposed method in
ludes a geometri
a
tive 
ontour model, whi
h in
ludes analysis of homogeneities both inside and outside ofthe evolving 
ontour. The appli
ation of RGI-based segmentation to provide initial 
ontournot only improves the 
omputational e�
ien
y, but also provides a method with whi
h toestimate the e�e
tive ba
kground about the lesion and to suppress unrelated pixel values.Also, our automati
 stopping 
riterion is lesion-spe
i�
, and does not rely on �xed iterations.As the results show, the term ES in the a
tive 
ontour model plays an important role fore�e
tive and e�
ient segmentation. As ‖ ∇φ ‖> 1, div[(1− 1
‖∇φ‖

)∇φ] will evolve the level setfun
tion φ towards redu
ing ‖ ∇φ ‖, thus to smooth φ. The larger the gradient magnitudeof level set fun
tion, the more it will be smoothed. While as ‖ ∇φ ‖< 1, div[(1 − 1
‖∇φ‖

)∇φ]18



will evolve the level set fun
tion towards in
reasing ‖ ∇φ ‖ to maintain the gradient of thelevel set fun
tion to some level. This me
hanism ensures the level set fun
tion, and thus the�nal 
ontour, to be relatively smooth. Meanwhile, as ‖ ∇φ ‖ is restri
ted in magnitude, theforeground has the potential to grow faster.It should be noti
ed that the weighted slope di�eren
e ∆vw is always non-negative aslong as g(x) is a de
reasing fun
tion. In the a
tive 
ontour model, if only the speed termdriven by image property is 
onsidered, the speed of 
ontour 
an be simpli�ed as:
~v = [(g(s) − c2)

2 − (g(s) − c1)
2] · v̂

= (c1 − c2) · [2 · g(s) − (c1 + c2)] · v̂where v̂ is the outward unit ve
tor. Inserting ~v into Equation (15), we have:
∆vw =

1

L − s
· (c1 − c2) · [2 · g(s) − (c1 + c2)]

2 · v̂ ≥ 0.If ~v is driven by other image property, su
h as edge information, this relationship still holds.When g(s) > 1
2
(c1 + c2), i.e. s is within the obje
t, the 
ontour will move outward to theedge, thus, we have ∆vw ≥ 0. While if g(s) < 1

2
(c1 + c2), i.e. s is out of obje
t, it will moveinward to the edge, we will also have ∆vw ≥ 0. So the weighted slope di�eren
e also providesa general me
hanism for terminating 
ontour evolution with other a
tive 
ontour models.In this study, we empiri
ally 
ompared the segmentation performan
e of the proposedmethod with our previously-reported region growing[6℄ and RGI-based[7℄ segmentation meth-ods. However, it is impossible for us to perform empiri
al 
omparisons between our methodand those reviewed in the introdu
tion se
tion, as we do not have 
odes of those methods.Timp's method[10℄ uses polar 
oordinate and restri
ts the mass sizes within 
ertain range,thus one would expe
t their method to work better for lesions with 
ir
ular-like margins.However, for lesions with irregular shapes or very large sizes, their method may have dif-19



�
ulty. Our dual stage segmentation method is able to handle this situation by furtherevolving the 
ontour via the a
tive 
ontour model. For the fuzzy-set-based methods devel-oped by Guliato et al. [11℄, both of them need to preset some thresholds su
h as the gray-levelthreshold in the �rst method and the maximum allowed di�eren
e between the value of thepixel being analyzed and the mean of the sub-region in the se
ond method, whi
h preventsthese methods from being applied in a large database. Their two thresholds were manuallysele
ted 
ase by 
ase in their evaluation using a database with 47 mammograms. On theother hand, our method is �exible in that no threshold need to be set in advan
e.In our preliminary study [35℄, we 
ompared two radiologists' outlines with a digitizeds
reen-�lm mammograms (SFM) database, whi
h 
onsisted of 29 benign (51 mammograms)and 55 malignant (96 mammograms) lesions. At an overlap threshold of 0.4, 96.6% oflesion images were 
orre
tly segmented by one radiologist in 
omparison with the other.This result indi
ates that the radiologists highly agreed on the lesion margins for SFM. We
ould expe
t that the radiologists would also agree on the lesion margins for FFDM as themanufa
turer has pre-pro
essed the FFDM images to make them appear to radiologist astraditional-looking SFM mammographs.When we developed the proposed segmentation algorithm, the FFDM database was being
onstru
ted, so our method was initially 
alibrated and tested with the SFM database [33℄.After building the FFDM database, we randomly pi
ked three groups of FFDM images, ea
hof whi
h 
onsisted of �ve benign and �ve malignant images, and evaluated the segmentationperforman
e using the proposed method 
alibrated with SFM images. The results weresimilar with what we had obtained with SFM images. Thus, we believe that the parametersobtained by SFM also work with FFDM images, whi
h was subsequently validated by theindependent evaluation with the entire FFDM database.Our results 
ould be partially explained by the pre-pro
essing of FFDM images, whi
his performed by the manufa
turers. After pre-pro
essing, the gray-level range and 
onstrastof FFDM images be
ome similar to those of SFM images, whi
h ensures the possibility of20



applying parameters from SFM images to FFDM images as gray-level range and 
ontrastare two key 
omponents used in our proposed lesion segmentation method. Our results alsoshow the robustness of the proposed method as it mainly uses the global information ofimages.VI. CONCLUSIONIn this paper, we present a new lesion segmentation method based on a geometri
 a
tive
ontour model, whi
h in
ludes an initial RGI segmentation, ba
kground estimation, ba
k-ground trend 
orre
tion, and a dynami
 stopping 
riterion. Evaluation with a large numberof FFDM images has shown that the proposed method is statisti
ally superior to our previousregion-growing and RGI-based algorithms in terms of overlap ratios obtained in 
ompari-son with expert's manual outlines. At an overlap threshold of 0.4, 85% of the images are
orre
tly segmented by the proposed method, while only 69% and 73% of the images are
orre
tly segmented by our previous region-growing and RGI-based methods, respe
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APPENDIXIn this part, we provide the details of the derivation from energy fun
tion (4) to the asso
iatedEuler-Lagrange equation (5). For 
onvenien
e, we restate Equation (4) here as:
Eǫ(c1, c2, φ) =

∫

Ω

[µ · δǫ(φ(x, y)) ‖ ∇φ(x, y) ‖

+
v

2
· (1− ‖ ∇φ(x, y) ‖)2

+λ1 · |f0(x, y) − c1|
2Hǫ(φ(x, y))

+λ2 · |f0(x, y) − c2|
2(1 − Hǫ(φ(x, y)))]dxdy. (17)We de�ne F (φ,∇φ, x, y) as:

F (φ,∇φ, x, y) = µδǫ(φ) ‖ ∇φ ‖ +
v

2
(1− ‖ ∇φ ‖)2

+λ1|f0 − c1|
2Hǫ(φ) + λ2|f0 − c2|

2(1 − Hǫ(φ)). (18)For simpli
ity, we have omitted the independent variables (x, y) of φ and f0. A

ordingto Cal
ulus of Variations, the s
alar fun
tion φ(x, y) that minimizes Eǫ(c1, c2, φ) solves thePDE:
d

dx
(
∂F

∂φx
) +

d

dy
(
∂F

∂φy
) −

∂F

∂φ
= 0. (19)Taking the partial derivative of F with respe
t to φx, φy and φ, respe
tively, we have:

∂F

∂φx
= µδǫ(φ)

φx

‖ ∇φ ‖
+ v(φx −

φx

‖ ∇φ ‖
)

∂F

∂φy
= µδǫ(φ)

φy

‖ ∇φ ‖
+ v(φy −

φy

‖ ∇φ ‖
)22



∂F

∂φ
= µ ‖ ∇φ ‖ δ

′

ǫ(φ) + [λ1(f0 − c1)
2 − λ2(f0 − c2)

2]δǫ(φ) (20)where δ
′

ǫ = dδ
dφ

and we use the relation ‖ ∇φ ‖=
√

φ2
x + φ2

y.The partial derivative of ∂F
∂φx

with respe
tive to x is:
d

dx
(
∂F

∂φx

) = µδ
′

ǫ(φ)
φ2

x

‖ ∇φ ‖
+ µδǫ(φ)

d

dx
(

φx

‖ ∇φ ‖
) + v

d

dx
[φx −

φx

‖ ∇φ ‖
]. (21)Similarly, we have:

d

dy
(
∂F

∂φy
) = µδ

′

ǫ(φ)
φ2

y

‖ ∇φ ‖
+ µδǫ(φ)

d

dy
(

φy

‖ ∇φ ‖
) + v

d

dy
[φy −

φy

‖ ∇φ ‖
]. (22)Inserting (20) - (22) ba
k to (19), we obtain:

0 = µδ
′

ǫ(φ)[
φ2

x

‖ ∇φ ‖
+

φ2
y

‖ ∇φ ‖
− ‖ ∇φ ‖]

+µδǫ(φ)[
d

dx
(

φx

‖ ∇φ ‖
) +

d

dy
(

φy

‖ ∇φ ‖
)]

+v{
d

dx
[φx −

φx

‖ ∇φ ‖
] +

d

dy
[φy −

φy

‖ ∇φ ‖
]}

−δǫ(φ)[λ1(f0 − c1)
2 − λ2(f0 − c2)

2]. (23)By noti
ing that:
φ2

x

‖ ∇φ ‖
+

φ2
y

‖ ∇φ ‖
=‖ ∇φ ‖

d

dx
(

φx

‖ ∇φ ‖
) +

d

dy
(

φy

‖ ∇φ ‖
) = div(

∇φ

‖ ∇φ ‖
)and
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d

dx
[φx −

φx

‖ ∇φ ‖
] +

d

dy
[φy −

φy

‖ ∇φ ‖
] = div[(1 −

1

‖ ∇φ ‖
)∇φ]we �nally obtain the 
ompa
t form of (23) as:

0 = δǫ(φ)[µ · div(
∇φ

‖ ∇φ ‖
) − λ1(f0 − c1)

2 + λ2(f0 − c2)
2] + v · div[(1 −

1

‖ ∇φ ‖
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Figure 1: Distribution of lesions' e�e
tive diameters obtained from the FFDM database.
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Figure 2: S
hemati
 diagram of the proposed dual-stage lesion segmentation algorithm.
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Figure 3: Illustration of de�ning the e�e
tive ba
kground. In this �gure, the solid linerepresents the initial 
ontour obtained by RGI segmentation and the dash-dotted re
tangleis the 
ir
ums
ribed re
tangle of this initial 
ontour. The e�e
tive ba
kground is de�ned asthe region inside the dashed re
tangle ex
luding the region within the initial 
ontour. Anautomati
 s
heme is employed to determine the best d.
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(a) (b)

(
) (d)Figure 6: An example of the e�e
t of ba
kground trend 
orre
tion on segmentation. (a) theoriginal ROI ; (b) segmentation result of (a); (
) the pro
essed ROI after ba
kground trend
orre
tion; and (d) segmentation result of (
).
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Figure 8: An example of the e�e
t of level set smoothness to the �nal segmentation re-sults. Left: segmentation without level set smoothness; Right: segmentation with level setsmoothness.
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Figure 9: Segmentation performan
e of four di�erent stopping 
riteria in terms of areaoverlap ratio (AOR) on a 
lini
al FFDM database. In both plots, ∆vw is the weighted slopedi�eren
e between foreground mean value and ba
kground mean value, in whi
h foregroundis the area within the evolving 
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(a) (b) (
) (d)Figure 10: Segmentation results for 5 malignant lesion examples. (a) radiologist's outline, (b)region-growing, (
) RGI-based segmentation and (d) the proposed dual-stage segmentationmethod 39
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Figure 11: Performan
e of three di�erent segmentation methods in terms of area overlapratio (AOR) on a 
lini
al FFDM database. Left: evaluated on 327 benign images; Right:evaluated on 412 malignant images. The results show that the dual-stage segmentationmethod is statisti
ally superior to both region-growing and RGI-based method.
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Table I: Statisti
al 
omparison of the performan
e of four stopping 
riteria in the dual-stage segmentation in terms of average area overlap (AOR), and p-values are given forthe 
omparison of the weighted slope di�eren
e with any other stopping 
riterion. Thesigni�
ant level αi for the individual paired t test is 
al
ulated using Holm's pro
edure(overall αT = 0.05). Same 
onvention as Fig. 9.
∆vw ∆v RFC0.01 RFC0.05Benign

mean ± std 0.61 ± 0.19 0.61 ± 0.19 0.61 ± 0.19 0.61 ± 0.19
p-value − 0.856 0.801 0.601sig. lev. (αi) − − − −Malignant
mean ± std 0.59 ± 0.19 0.53 ± 0.20 0.57 ± 0.19 0.52 ± 0.20
p-value − < 0.001 0.192 < 0.001sig. lev. (αi) − 0.05 − 0.025All
mean ± std 0.60 ± 0.19 0.57 ± 0.20 0.59 ± 0.19 0.56 ± 0.20
p-value − 0.002 0.25 < 0.001sig. lev.(αi) − 0.05 − 0.025
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Table II: Statisti
al 
omparison of the three lesion segmentation algorithms. Performan
eis given by average area overlap ratio, and p-values are given for the 
omparison of thedual-stage segmentation with the previous region-growing and RGI-based method. Thesigni�
ant level αi for the individual paired t test is 
al
ulated using Holm's pro
edure(overall αT = 0.05). Dual-stage segmentation RGI Region-growingBenign
mean ± std 0.61 ± 0.19 0.58 ± 0.19 0.51 ± 0.20
p-value − 0.01 < 0.001seg. lev. (αi) − 0.05 0.025Malignant
mean ± std 0.59 ± 0.19 0.48 ± 0.20 0.49 ± 0.20
p-value − < 0.001 < 0.001seg. lev. (αi) − 0.025 0.05All
mean ± std 0.60 ± 0.19 0.52 ± 0.20 0.50 ± 0.20
p-value − < 0.001 < 0.001seg. lev. (αi) − 0.05 0.025
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PURPOSE: (473/2200) 
 

The objective of this study is to evaluate the correlation performance of individual 

computerized features extracted from the full field digital mammograms (FFDM) of a 

lesion obtained in two different views. This research provides a guide for discriminating 

corresponding and non-corresponding lesion pairs within the CAD framework. It is also 

helpful for guiding the development of new features to improve the accuracy of image 

matching in disease diagnosis and prognosis. 

 

 

METHOD AND MATERIALS: (1234/2200) 

 

One dataset (A) includes 103 biopsy proven cases (48 benign solid lesions and 55 

malignant lesions), each of which has a craniocaudal (CC) and mediolateral (ML) view. 

Another dataset (B) includes 52 cases (24 benign solid lesions and 28 malignant lesions), 

each of which has a CC and mediolateral oblique (MLO) view. In order to evaluate the 

robustness of the correlation performance to lesion segmentation, besides the 

radiologist’s outlines, three automatic segmentation methods were employed to extract 

the mass lesion from the surrounding tissues. The conventional region-growing method 

uses abrupt changes in size and circularity as the rules of segmentation. The radial 

gradient index (RGI) based method applies RGI model to the suspicious lesion multiplied 

by a constraint function. The region-based active contour model evolves the contour 

based on the homogeneities both inside and outside of the evolving contour. Fifteen 

computer-extracted features of each lesion were calculated in both views in order to 

quantify the characteristics of margin, shape, contrast and texture of the lesion. For each 

feature, correlation coefficient between the two views and the p-value of the derived 

correlation coefficient were obtained.  

 

 

RESULTS: (672/2200) 

 

With the human outline, the feature characterizing the diameter of lesion yielded the 

correlation efficient of 0.87 for dataset A and 0.88 for dataset B, both of which have p-

values far less than 0.05. The features characterizing shape, contrast and texture showed 

better performance among the 15 individual features despite of segmentation methods, 

pathology and the type of view pairs. This is because the features representing large-scale 

information are less sensitive to the change of position than those representing small-
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scale information, which results in the higher correlation between large-scale features 

from different views than that of small-scale features.  

 

CONCLUSIONS: (301/2200) 

 

Our investigation indicates that the features that characterize the large-scale information 

of lesion have higher correlation between the two view images. We are currently 

applying these features to develop automated image matching method to determine 

corresponding and non-corresponding lesion pairs. 
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ABSTRACT:  

Identifying the corresponding image pair of a lesion is an essential step for combining information from 
different views of the lesion to improve the diagnostic ability for both radiologists and CAD systems. Because 
of the non-rigidity of the breasts and the 2D projective property of mammograms, this task is not trivial. In 
this study, we present a computerized framework that differentiates the corresponding images from different 
views of a lesion from non-corresponding ones. A dual-stage segmentation method, which employs an initial 
radial gradient index (RGI) based segmentation and an active contour model, was firstly applied to extract 
mass lesions from the surrounding tissues. Then various lesion features were automatically extracted from 
each of the two views of each lesion to quantify the characteristics of margin, shape, size, texture and context 
of the lesion, as well as its distance to nipple. We employed a two-step method to select an effective subset of 
features, and combined it with a BANN to obtain a discriminant score, which yielded an estimate of the 
probability that the two images are of the same physical lesion. ROC analysis was used to evaluate the 
performance of the individual features and the selected feature subset in the task of distinguishing 
corresponding pairs from non-corresponding pairs. By using a FFDM database with 124 corresponding image 
pairs and 35 non-corresponding pairs, the distance feature yielded an AUC (area under the ROC curve) of 
0.80 with leave-one-out evaluation, and the feature subset, which includes distance feature, lesion size and 
lesion contrast, yielded an AUC of 0.86.  

DISCRIPTION OF PURPOSE: 

Merging information from different views of a lesion has been widely recognized to allow radiologists to 
better detect and evaluate breast abnormalities in FFDM images. However, since a mammogram represents 
the 2D projection of the 3D distribution of attenuation coefficient, as well as the breast being a non-rigid 
object, the conventional image-registration techniques are not appropriate. In this study, we propose a 
computerized scheme, which relies on computer-extracted features instead of the original image, to determine 
if an image pair from different views represents the same lesion.  

METHOD(S): 

A dual-stage segmentation method was firstly applied to extract lesions from the surrounding tissues. This 
algorithm utilizes a geometric active contour model that maximizes an energy function based on the 
homogeneities inside and outside of the evolving contour. Prior to the application of the active contour model, 
a RGI-based method is applied to yield an initial contour close to the lesion boundary location in a 
computationally efficient manner.  

Three groups of computer-extracted lesion features were used in our study. The first group includes features 
characterizing spiculation, margin, shape and contrast of a lesion, which are widely used for the task of 
distinguishing between malignant and benign lesions. The second group includes texture features extracted 
from various regions including the lesion, the surrounding neighborhood of the lesion, and the entire ROI, 
respectively. For each region, a 2D gray-level co-occurrence matrix (GLCM) was constructed, and texture 
features were extracted to quantify the spatial dependence of gray-level values. We developed an automatic 

Appendix C: SPIE Medical Imaging 2008 (Submitted)



 

 

neighborhood estimation method to determine the effective circumstance of the lesion. The third group 
includes a distance feature calculated as the Euclidean distance from the nipple location to the center of the 
lesion. A nipple searching method was developed to identify the nipple location automatically. 

A two-step method was employed for feature selection. A classifier was firstly applied to each single feature 
pair from different views, yielding a “correspondence” feature that represents the probability of corresponding 
pairs. Then, a linear stepwise feature selection method was used to select the effective subset of these 
correspondence features.  

We used the BANN as our classifier, which incorporates Bayesian inference to avoid the problem of “over 
fitting”. Receiver operating characteristic (ROC) analysis was used to assess the performance of the 
individual features and the selected feature subset in the task of distinguishing corresponding pairs from non-
corresponding pairs. 

RESULTS: 

In our preliminary study, we tested the proposed scheme using a FFDM database, which includes 131 biopsy-
proven lesions (63 benign and 68 malignant). From this database, we constructed 124 corresponding pairs and 
35 non-corresponding pairs. Each pair consists of a craniocaudal (CC) view and a mediolateral (ML) view. 
Considering the most realistic scenario of lesion mismatch in clinical practice, the non-corresponding pairs 
were constructed from cases of the same patients but different physical lesions.  

The correlation between the distance feature, from the automatic nipple identification method and those from 
manual nipple identification was 0.997 (p<0.0005). In leave-one-out evaluation by lesion, the distance feature 
outperformed among all the single features, yielding an AUC of 0.80. Distance feature, lesion size and lesion 
contrast were selected as the effective feature subset and yielded an AUC of 0.86. The improvement by using 
multiple features was statistically significant compared to single feature performance (p = 0.0075).  

NEW OR BREAKTHROUGH WORK TO BE PRESENTED: 

Our study includes three attractive features: 1) This correlative feature analysis (CFA) framework is based on 
computer-extracted features instead of original images, which is different from conventional image 
registration in which the registration is to align two images known to represent the same object, while the task 
of CFA is to evaluate the probability that the given two images represent the same object; 2) The newly 
developed distance feature improves the performance of single feature from AUC of 0.71 (lesion size) to 0.80 
with leave-one-out evaluation (p = 0.04); 3) The first step of the new two-stage feature selection method 
effectively reduces the dimensionality of the feature space, and thus improves the performance to AUC of 
0.86 with leave-one-out evaluation, as compared with 0.76 when applying the original features directly 
(p=0.03). 

CONCLUSIONS: 

We have presented a correlative feature analysis framework to estimate the probability that a given pair of 
two images as of the same physical lesion, and our investigation indicates that the proposed method is a 
promising way to distinguish between corresponding and non-corresponding pairs. We are collecting more 
cases to evaluate our method on a larger scale. 

INDICATE WHETHER THE WORK IS BEING, OR HAS BEEN, SUBMITTED FOR 
PUBLICATION OR PRESENTATION ELSEWHERE, AND, IF SO, INDICATE HOW THE 
SUBMISSIONS DIFFER 

No. 

 




